Discover how unified clinical and financial data can solve healthcare’s $265B revenue cycle inefficiency problem with actionable AI-driven insights.
Automation (RPA) makes the revenue cycle more efficient — saving time and decreasing errors. While this is an improvement for health systems and hospitals RPA efficiencies are one-dimensional. Fully optimizing the revenue cycle and getting the most out of AI (including RPA) requires a clear and holistic view of payments, an understanding of the full lifecycle flow of claims.
So you want to add AI to your revenue cycle? You have to start by establishing a solid foundation of data intelligence. This comes from normalizing and organizing payments data in a way that provides actionable insights. This works will establish the where/why/how of your AI goals.
AI, machine learning and predictive models are abstract terms in the revenue cycle. How do you actually move past the buzzwords and get value out of your healthcare payments data? Here are six ways healthcare providers and RCMs can truly operationalize healthcare payments data to improve patient collections and revenue cycle operations.
In healthcare payments, where data flows from multiple systems and standards are a moving target, data can be pretty filthy. This means mismatched formats, errors and inconsistencies. Having clean data is often the biggest roadblock to being able to reap the benefits of data science.
Subscribe to our awesome newsletter and stay updated with the latest design news and freebies from Marco agency
We create amazing Webflow templates for creative people all around the world.