Denials are a significant and persistent obstacle for health systems and hospitals. They slow down receivables and add unnecessary administrative burdens. Sift Healthcare’s 2022 Denials Insight Report contains granular denials insights and action items to track root causes, prevent denials, and prioritize follow-up work.
Sift's VP of Product & Client Success, Blake Sollenberger, talks denials management, covering 4 key areas health systems and hospitals can focus on to recover missed receivables or accelerate cash.
Automation (RPA) makes the revenue cycle more efficient — saving time and decreasing errors. While this is an improvement for health systems and hospitals RPA efficiencies are one-dimensional. Fully optimizing the revenue cycle and getting the most out of AI (including RPA) requires a clear and holistic view of payments, an understanding of the full lifecycle flow of claims.
So you want to add AI to your revenue cycle? You have to start by establishing a solid foundation of data intelligence. This comes from normalizing and organizing payments data in a way that provides actionable insights. This works will establish the where/why/how of your AI goals.
Every day healthcare providers are extending credit in the form of care, and they have little idea whether, how much or when they will be paid. It’s time for healthcare providers to start deploying well-established data science and analytics tools to forecast payments and optimize outcomes.
AI, machine learning and predictive models are abstract terms in the revenue cycle. How do you actually move past the buzzwords and get value out of your healthcare payments data? Here are six ways healthcare providers and RCMs can truly operationalize healthcare payments data to improve patient collections and revenue cycle operations.
Sift Healthcare's Rev/Track provides revenue cycle leaders with instant access to detailed intelligence that enables them to extract meaningful insights from their healthcare payments data -- information that drives better-informed decisions around revenue cycle operations.
Rev/Track leverages Sift Healthcare's AI and machine learning to help healthcare providers and RCMs to optimize revenue cycle operations. Rev/Track delivers detailed intelligence around payments behavior, insurance denials, collection trends, patient segments and revenue cycle work efforts.
Introducing The Sift Quality Score. For revenue cycle managers, understanding account quality and its impact on patient collections is essential for forecasting revenue, optimizing rcm workflows and ensuring the best strategy is in place for managing resources. Sift’s Quality Score is derived from Sift’s predictive model scores — it tracks account quality over the early-out period, enabling RCMs to more intelligently forecast revenue throughout each billing cycle.
93% of healthcare administrators say that data analytics are “crucial” to future healthcare operations. At the same time, 84% say the usage of advanced analytics at their organization is “negligible”. In healthcare payments, there are three key roadblocks to the utilization of advanced analytics to improve the revenue cycle.
Subscribe to our awesome newsletter and stay updated with the latest design news and freebies from Marco agency
We create amazing Webflow templates for creative people all around the world.